Challenges of Cellulosic Ethanol Production from Xylose-extracted Corncob Residues

نویسندگان

  • Lei Zhang
  • Ji-Hong Li
  • Shi-Zhong Li
چکیده

Xylose-extracted corncob residue (X-ER), a byproduct from the xylose production industry, is a potential cellulose-rich energy resource. However, attempts to achieve large-scale production of cellulosic ethanol using X-ER have been unsatisfactory due to a lack of understanding of the substrate. This study presents the first characterization of the X-ER to evaluate its potential utilization in the sequential production of cellulosic ethanol. The current dilute acid treatment procedures used for the corncobs by the xylose-production industry were insufficient for efficient deconstruction of cellulose structure to release available sugars for subsequent cellulosic ethanol conversion. After a secondary dilute acid hydrolysis of the X-ER, an additional 30% hemicellulose was recovered. In addition, a more efficient enzymatic hydrolysis of X-ER was observed resulting in a significantly higher yield of glucose conversion compared with an untreated X-ER control. These results suggest X-ER can be utilized for cellulosic ethanol production. However, improved corncob pretreatment procedures are needed for economical cellulosic ethanol conversion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aerobic and sequential anaerobic fermentation to produce xylitol and ethanol using non-detoxified acid pretreated corncob

BACKGROUND For economical bioethanol production from lignocellulosic materials, the major technical challenges to lower the production cost are as follows: (1) The microorganism should use efficiently all glucose and xylose in the lignocellulose hydrolysate. (2) The microorganism should have high tolerance to the inhibitors present in the lignocellulose hydrolysate. The aim of the present work ...

متن کامل

Production of ethanol from cellulosic biomass hydrolysates using genetically engineered Saccharomyces yeast capable of cofermenting glucose and xylose.

Recent studies have proven ethanol to be the ideal liquid fuel for transportation, and renewable lignocellulosic materials to be the attractive feedstocks for ethanol fuel production by fermentation. The major fermentable sugars from hydrolysis of most cellulosic biomass are D-glucose and D-xylose. The naturally occurring Saccharomyces yeasts that are used by industry to produce ethanol from st...

متن کامل

Xylitol production by Saccharomyces cerevisiae overexpressing different xylose reductases using non-detoxified hemicellulosic hydrolysate of corncob

Xylitol production was compared in fed batch fermentation by Saccharomyces cerevisiae strains overexpressing xylose reductase (XR) genes from Candida tropicalis, Pichia stipitis, Neurospora crassa, and an endogenous gene GRE3. The gene encoding a xylose specific transporter (SUT1) from P. stipitis was cloned to improve xylose transport and fed batch fermentation was used with glucose as a cosub...

متن کامل

Bioconversion of wheat straw cellulose/hemicellulose to ethanol by Saccharomyces uvarum and Pachysolen tannophilus.

The information presented in this publication represents current research findings on the production of glucose and xylose from straw and subsequent direct fermentation of both sugars to ethanol. Agricultural straw was subjected to thermal or alkali pulping prior to enzymatic saccharification. When wheat straw (WS) was treated at 170 degrees C for 30-60 min at a water-to-solids ratio of 7:1, th...

متن کامل

Evaluation of ethanol production from corncob using Scheffersomyces (Pichia) stipitis CBS 6054 by volumetric scale-up.

In scale-up, the potential of ethanol production by dilute sulfuric acid pretreatment using corncob was investigated. Pretreatments were performed at 170 °C with various acid concentrations ranging from 0% to 1.656% based on oven dry weight. Following pretreatment, pretreated biomass yield ranged from 59% to 67%. More than 90% of xylan was removed at 0.828% of sulfuric acid. At same pretreatmen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011